本文分類:news發(fā)布日期:2026/2/23 7:19:06
相關(guān)文章
一文說清Elasticsearch教程如何處理海量日志
一文講透Elasticsearch如何搞定海量日志:從采集到可視化的實戰(zhàn)全解析 在微服務(wù)橫行、系統(tǒng)動輒上百個節(jié)點的今天,你有沒有經(jīng)歷過這樣的場景? 凌晨兩點,線上突然告警,用戶支付失敗率飆升。你火速登錄服務(wù)器,…
建站知識
2026/2/20 3:23:27
VibeThinker-1.5B部署經(jīng)驗分享:踩過的5個坑與解決方案
VibeThinker-1.5B部署經(jīng)驗分享:踩過的5個坑與解決方案 1. 引言
1.1 業(yè)務(wù)場景描述
隨著輕量級大模型在邊緣計算和低成本推理場景中的需求日益增長,微博開源的 VibeThinker-1.5B 成為一個極具吸引力的選擇。該模型僅含15億參數(shù),訓(xùn)練成本低至7…
建站知識
2026/2/9 2:30:24
開源大模型落地新趨勢:通義千問3-14B支持Agent插件實戰(zhàn)指南
開源大模型落地新趨勢:通義千問3-14B支持Agent插件實戰(zhàn)指南
1. 引言:為何Qwen3-14B成為開源大模型“守門員”?
在當(dāng)前大模型部署成本高企、推理延遲敏感的背景下,如何在有限算力下實現(xiàn)高質(zhì)量推理,是工程團隊面臨的核…
建站知識
2026/2/23 7:19:01
Qwen2.5-0.5B如何省資源?輕量部署優(yōu)化實戰(zhàn)案例
Qwen2.5-0.5B如何省資源?輕量部署優(yōu)化實戰(zhàn)案例
1. 背景與挑戰(zhàn):邊緣場景下的大模型部署困境
隨著大語言模型(LLM)在各類應(yīng)用中廣泛落地,如何在低算力設(shè)備上實現(xiàn)高效推理成為工程實踐中的關(guān)鍵課題。傳統(tǒng)大模型通常依賴…
建站知識
2026/1/23 4:31:37
MinerU與PyMuPDF對比評測:復(fù)雜文檔提取精度實戰(zhàn)分析
MinerU與PyMuPDF對比評測:復(fù)雜文檔提取精度實戰(zhàn)分析
1. 選型背景與評測目標(biāo)
在處理學(xué)術(shù)論文、技術(shù)報告、財務(wù)報表等復(fù)雜PDF文檔時,如何高效、準(zhǔn)確地提取其中的文本、表格、公式和圖像內(nèi)容,一直是自然語言處理與文檔智能領(lǐng)域的核心挑戰(zhàn)。傳統(tǒng)…
建站知識
2026/1/22 23:25:12
為何HY-MT1.5優(yōu)于同尺寸模型?技術(shù)架構(gòu)深度拆解
為何HY-MT1.5優(yōu)于同尺寸模型?技術(shù)架構(gòu)深度拆解
1. 背景與挑戰(zhàn):輕量級多語翻譯的工程困局
近年來,隨著大模型在自然語言處理領(lǐng)域的廣泛應(yīng)用,神經(jīng)機器翻譯(NMT)系統(tǒng)普遍朝著千億參數(shù)規(guī)模演進。然而…
建站知識
2026/1/27 2:17:26
BAAI/bge-m3避坑指南:語義相似度分析常見問題解決
BAAI/bge-m3避坑指南:語義相似度分析常見問題解決
1. 背景與使用場景
BAAI/bge-m3 是由北京智源人工智能研究院推出的多語言文本嵌入模型,屬于其廣受好評的 BGE(Beijing Academy of Artificial Intelligence General Embedding)…
建站知識
2026/2/18 5:16:48
通義千問2.5實操手冊:從鏡像啟動到響應(yīng)輸出
通義千問2.5實操手冊:從鏡像啟動到響應(yīng)輸出
1. 引言
隨著大語言模型在自然語言理解與生成任務(wù)中的廣泛應(yīng)用,高效部署和快速驗證成為開發(fā)者關(guān)注的核心問題。Qwen2.5 是通義千問系列最新一代大型語言模型,涵蓋從 0.5B 到 720B 參數(shù)的多個版本…
建站知識
2026/2/15 4:50:41

